SMO
Namespace: Semagle.MachineLearning.SVM
Implementation of Sequential Minimal Optimization (SMO) algorithm
Nested types and modules
Type | Description |
C_SMO
|
General parameters for C_SMO problem
|
C_SVC
|
Optimization parameters for C_SVC problem
|
C_SVR
|
Optimization parameters for C_SVR problem
|
OneClass
|
Optimization parameters for One-Class problem
|
OptimizationOptions
|
Optimization options of SMO algorithm
|
Q
|
Interface of Q matrix
|
WSSStrategy
|
Working set selection strategy
|
Functions and values
Function or value | Description |
C_SMO X Y Q parameters options
Signature: X:'X [] -> Y:float32 [] -> Q:Q -> parameters:C_SMO -> options:OptimizationOptions -> 'X [] * float32 [] * float [] * float
Type parameters: 'X
|
Sequential Minimal Optimization (SMO) problem solver
|
C_SVC X Y K parameters options
Signature: X:'X [] -> Y:float32 [] -> K:Kernel<'X> -> parameters:C_SVC -> options:OptimizationOptions -> SVM<'X,'?7884>
Type parameters: 'X, '?7884
|
Two class C Support Vector Classification (SVC) problem solver
|
C_SVC_M X Y K parameters options
Signature: X:'X [] -> Y:'Y [] -> K:Kernel<'X> -> parameters:C_SVC -> options:OptimizationOptions -> SVM<'X,'Y>
Type parameters: 'X, 'Y
|
Multi-class C Support Vector Classification (SVC) problem solver
|
C_SVR X Y K parameters options
Signature: X:'X [] -> Y:float32 [] -> K:Kernel<'X> -> parameters:C_SVR -> options:OptimizationOptions -> SVM<'X,'?7919>
Type parameters: 'X, '?7919
|
C Support Vector Regression (SVR) problem solver
|
defaultOptimizationOptions
Signature: OptimizationOptions
|
Default optimization options
|
OneClass X K parameters options
Signature: X:'X [] -> K:Kernel<'X> -> parameters:OneClass -> options:OptimizationOptions -> SVM<'X,'?7900>
Type parameters: 'X, '?7900
|
One-Class problem solver
|